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ABSTRACT  

WEAVE is the next-generation optical spectroscopy facility for the William Herschel Telescope (WHT). It shows two 
channels (blue and red) and two working modes, a low-resolution (R=3,000-7,500) and a high-resolution (R=13,000-
25,000). The dispersing elements of the spectrograph are Volume Phase Holographic Gratings (VPHGs), two for the 
lower resolution mode and three for the higher resolution mode. Such gratings have a large size (clear aperture > 190 
mm) and they are characterized by some key features, i.e. diffraction efficiency, wavefront error and dispersion that
affect the final performances of the spectrograph. The VPHGs have been produced by KOSI based on the WEAVE
design. After that, the VPHGs have been characterized, showing interesting results in terms of diffraction efficiency that
reached peak values of 90%. As for the wavefront distortion, which is one of the critical aspect in VPHG technology, a
different behavior between medium and high resolution elements was found. A larger wavefront distortion have been
measured in the high resolution elements, because of the higher aspect ratio. A polishing process on the assembled
VPHGs has been performed in order to reduce the wavefront distortion. Here, the results are presented and the specific
issues discussed.

Keywords: astronomical spectrographs, dispersing element, volume phase holographic grating, resolution. 

1. INTRODUCTION
Multi-object survey spectrographs are becoming key facilities in modern astronomy and astrophysics, since they allow 
for the collection of many (hundreds) of spectra of objects simultaneously. Such large multiplexing capability is crucial, 
especially if the spectrograph fits a 3-4 m class telescope covering wide fields of view. They will address topics like the 
redshifts of thousands of galaxies; they will be complementary to mission like GAIA in providing chemical element 
abundances. In this framework, different facilities are under design or construction, such as 4MOST1, DESI2 and of 
course WEAVE3. All of them are fiber-fed and provide not only spectral capabilities, but also spatial resolution by 
means of IFUs, making the observation of extended objects possible. The spectral range of these facilities is about 350 – 
1000 nm. 
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the film thickness (d) and the refractive index modulation (Δn) is equal to half of the target wavelength. For astronomical 
applications, a high peak efficiency is not enough, indeed, it is important to have large efficiency across the target 
bandwidth. According to the same model, the bandwidths (angular and spectral) of the diffraction efficiency curve are 
inversely proportional to the line density (G) and to the film thickness10.  

Therefore, a large peak efficiency can be obtained playing with the two film parameters d and Δn, but in order to obtain a 
wide efficiency band, it is necessary to decrease the film thickness, d, especially for small pitch grating (large G values). 
If d decreases, of course the Δn must increase to maintain a high peak efficiency. This makes the VPHG manufacturing 
more difficult and risky. The large G condition occurs for the VPHGs used in the high-resolution modes of the 
spectrographs. 

Moreover, for large G values, the incidence angle increases and in VPHGs, there is a polarization effect, i.e. the 
diffraction efficiency in the two polarizations becomes more and more different, making it difficult to achieve a large 
efficiency for unpolarized light7. 

3. WEAVE SPECTROGRAPH OVERVIEW AND GRATING SPECIFICATIONS
The WEAVE spectrograph is a fiber-fed instrument. The fibers form a long slit, the light is collimated and sent to two 
arms by means of a dichroic mirror. The two arms, namely blue and red can work in a low resolution (R=3,000-7,500) 
and high resolution (R=13,000-25,000) modes. The optical scheme from the fiber exit is reported in figure 2. 

Figure 2. Optical scheme of the WEAVE spectrograph showing the two channels in the low-resolution and high-resolution modes. 

The switching between the low and high resolution modes occurs thanks to the rotation of the camera arm together with 
the switch of the VPHG. Indeed, the incidence angle on the VPHG increases, when higher dispersion and resolution are 
required. 

There will be a total of five VPHGs installed in WEAVE, two at low resolution (LR, one blue and one red) and three at 
high resolution (HR, one red and two blues). The specifications of the VPHGs are reported in table 1. 
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Table 1. Main specifications of the five VPHGs to be installed in the WEAVE spectrograph as dispersing elements. 

Property Value 
Operating temperature Room temperature 
Operating pressure 0.8x105 Pascal 
Outer shape Rectangular, grating grooves aligned along shorter side 
Clear aperture See Figure 3 and Figure 9 
De-centering  of the footprint in respect to the 
substrate Yes Yes Yes 

Total substrate thickness (without considering 
gelatine and cement thickness) 38 mm 50 mm 50 mm 

Substrate material Fused Silica 
Optical quality of transmitted beam over the clear 
aperture ≤ 4λ 

A/R coating on external substrate surface Yes 
Fringe angular orientation (in respect to the 
reference glass substrate)  +/- 15 arcmin  

Grating name Blue LR 
Red LR 

Blue HR1 
Red HR Blue HR2 

Centre (Littrow) wavelengths 490 nm (blue) 
775 nm (red) 

438 nm (blue) 
645 nm (red) 

513 nm (blue) 
 

Blue wavelength coverage 366 nm – 606 nm 404 nm – 465 nm 473 nm – 545 nm 
Red wavelength coverage 579 nm  – 959 nm 595 nm  – 685 nm  
Blue VPH ruling density  1385.2 lines / mm 3579.6 lines / mm 3056.9 lines / mm 
Red VPH ruling density  875.9 lines / mm 2430.7 lines / mm  
Ruling density accuracy +/- 1 line/mm 
VPH incidence angle (in air) blue 22.72° 54.43° 54.46° 
VPH output angle (in air) blue 17.01° 48.98° 48.98° 
VPH incidence angle (in air) red 19.82° 51.59°  
VPH output angle (in air) red 19.86° 51.65°  

 

We notice some important differences between the LR and HR gratings that play an important role in determining the 
final behavior of the dispersing element. 

First of all, the aspect ratio of the LRs shows an almost squared aspect ratio, whereas the HRs are rectangular (about 
3:2). The total thickness of the HR gratings is bigger than that of the LR gratings in order to maintain a good stiffness of 
the optical element. The size of the substrate has also to be large enough to allow for the writing of the grating without 
the laser illuminating the edges of the substrate at the defined angle (which is set according to the line density). As for 
the footprints, they are not centered in the substrate, but an offset that varies from grating to grating is present to fit the 
opto-mechanical constraints of the spectrograph. 

The other large differences are in the line density and working angles. Indeed, the LR gratings work around 20° with line 
density near 1000 l/mm; the HR VPHGs work at about 50° of incidence angle with line densities of 2500 – 3500 l/mm. 
Clearly, the red gratings working at longer wavelengths require lower line density value to achieve the same dispersion 
according to the grating equation11. The accuracy in the line density (+/- 1 l/mm) is not a tight requirement in spite of the 
fact that common accuracies are of the order of a few l/mm. The fringe angular orientation represents the maximum 
rotation of the VPHG “grooves” in respect to the reference substrate. The requirement of +/- 15 arcmin is not an issue for 
the manufacturing process of VPHG developed at KOSI. 

Regarding the working angle, we notice that the Bragg condition is not matched; this is due to the fact that the grating 
fringes are slanted in order to minimize the presence of Littrow ghosts on the detector overlapped to the spectra12. 

Looking at the other parameters, we can notice that the wavefront error of the diffracted beam must be smaller than 4λ, 
which is a large value. Clearly, if the WFE is focus, it can be easily compensated by the focusing system in the camera, 

Proc. of SPIE Vol. 10706  107064X-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



HOLOGRAPHIC APERTURE

CLEAR APERTURE
CENTRE PLANE ì

FOOTPRINT VPH
CENTRE PLANE

110x450)

/'

GRAVITY
II GIRECT ION

DIRECTION ,I

12017.41

14.6

c7. O
-rp Ñ

. Wry Ñ V

HqOGRAPHIC APERTURE120

222.1

1230.8)

CLEAR APERTURE
CENTRE PLANE

HOLOGRAPHIC APERTURE

(10x45 °)

/FOOTPRINT VPk ' 1 \
CENTRE PLANE

I /
I \

/ / I 3Ì
/

1 V

i

I i-
t

GRAVITY DISPERSION

OIRECTION
IREETION

\ /I

\ / I

\ //
. i

/n
.

(2 3)

113.3

.8

214 7

(230.8)

 

 

but if the WFE is due to other terms, the compensation will be less effective. In principle, 4λ is acceptable only if it 
consists roughly in half focus and half astigmatism. We have to stress that the control of WFE in VPHGs is an open issue 
and there are not established rules. Indeed, the WFE could come from the optical aberrations of the holographic writing 
set-up that are transferred in the grating pattern and/or come from the deformation of the whole grating system after the 
gluing of the substrates. In the past, the WFE issue has been highlighted in the case of HERMES13 and  SUBARU PFS14. 
Since the total wavefront error budget in modern spectrograph is tight, the grating should have a WFE under control. An 
interesting option is the post polishing of the VPHG, as already performed in the case of dispersing elements of 
HERMES. Such approach is risky, since the polishing occurs on the fully assembled VPHG and not on the substrate 
before the grating is recorded. In addition, it is necessary to apply a cold AR coating to avoid any damage of the 
holographic pattern and it is known that cold AR coating are typically less performing, especially at high incidence angle 
(the case of high resolution VPHGs) and with a wide angle range. Another consideration related to this approach regards 
the recording of secondary holograms in the VPHG during the writing step because of the reflection losses on the 
uncoated substrate that become important especially when increasing the incidence angle. Such secondary holograms 
reduce the diffraction efficiency in the first order. In the case of WEAVE’s VPHGs, two different strategies have been 
followed: for the LR VPHGs, the substrates were provided to the manufacturer with the AR coating already deposited on 
one surface; for the HR VPHGs, the substrates were provided uncoated. 

It is worth noting that the spectral ranges of both the LR and HR VPHGs are wide if we consider the degree of 
dispersion. The result is of course a long spectrum on the CCD, but also strong requirements in the holographic 
properties (d, Δn) in order to provide acceptable diffraction efficiency at the edges of the spectral bands. 

 

4. LOW RESOLUTION VPHGS 
The LR VPHGs are, in principle, quite simple to manufacture from both an efficiency point of view and the overall 
optical quality. Indeed, it is not required a too large modulation of the refractive index for achieving the target efficiency 
and the aspect ratio is square. In figure 3, the technical drawings of the two VPHGs are reported showing the footprint 
and the holographic aperture.  

 
Figure 3. Technical drawings of the footprints for the Blue and Red LR VPHGs (left and right respectively).  
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We notice how the footprint is not oval as expected considering that fields coming from the fibers forming the long slit 
and considering the different wavelengths in the spectral range. We clearly see that the writing area, defined by the 
holographic set-up, is much wider than the footprint of the VPHGs. 

The predicted diffraction efficiency by KOSI for the two VPHGs are reported in figure 4 considering unpolarized light, a 
perfect AR coating and the nominal incidence angle (see table 1). 

 
Figure 4. Plots of the diffraction efficiency (order +1 and order 0) for the two LR VPHGs (blue on the left and red on the right) at 
nominal incidence angle considering unpolarized light. The red squares represent the production minimum guaranteed by the 
manufacturer at the central and edges wavelengths. 

The peak efficiency is larger than 90% and the overall efficiency in the entire range is larger than 50%. The zero order is 
almost symmetric in respect to the first order at least at longer wavelengths, meaning that no other orders are 
propagating. At shorter wavelengths, a small contribution (about 10%) from the second order is possible. Since the 
second order is diffracted at double angles, such component is screened out by the VPHG holder. Of course, there could 
be blue light diffracted in the second order by the red VPHG, but there should not be blue light in the red arm thanks to 
the dichroic mirror. 

The LR VPHGs were produced and characterized by KOSI and at INAF – Osservatorio Astronomico di Brera. In figure 
5, photographs of the two VPHGs are reported. 

 
Figure 5. Photographs of the blue (left) and red (right) LR VPHGs for WEAVE. 

 

The values of line density, groove orientation and clear aperture are reported in the next table. 

Table 2. Values of the line density, fringe orientation and clear aperture for the LR VPHGs. 

Grating Line density (l/mm) 
specification/measured 

Orientation (arcmin) 
specification/measured 

Clear Aperture (mm) 

LR BLUE 1385.2 / 1385.3 +/- 15 / 2.464 212.0 x 205.0 
LR RED 875.9 / 875.5 +/- 15 / 3.573 208.6 x 202.0 
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Figure 7. Top: Stitched WFE of the whole blue LR VPHG (on the left) and of the clear aperture (on the right). Bottom: 
Decomposition of the WFE in the low orders (on the left) and high orders (on the right). 

 

 

 
Figure 8. Top: Stitched WFE of the whole Red LR VPHG (on the left) and of the clear aperture (on the right). Bottom: 
Decomposition of the WFE in the low orders (on the left) and high orders (on the right). 

 
 

The blue LR VPHG shows a smaller WFE than the red VPHG. In both cases, the WFE (PtV) is well below the 4λ, which 
was reported in the specifications table. This is a good result since it means that both the writing procedure and the 
assembling process (gluing of the second substrate to cover and to protect the gelatin layer) are under control. 
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especially as peak efficiency. Indeed, the efficiency is sufficient at the edges. For sure, there is an effect by the lack of 
AR coating during the writing step, but probably the set of parameters d/Δn is different from the designed value. We 
have to consider the fact that the holographic material is reaching the performance limit in the case of HR VPHGs. 

Another important effect that has to be considered is the polarization effect. Indeed, the diffraction efficiency of such HR 
VPHGs is completely different for the two polarizations, especially at the edges of the spectral band. This means that 
also a small degree of polarization of the light turns into large discrepancies in the values of the measured diffraction 
efficiency. In any case, the measurements at the laser wavelengths carried out at INAF are in a good agreement with the 
KOSI curves. 

The WFE in the first order has been measured for the HR Red grating at the working angle. For the Blue2, the first order 
was measured at the interferometer laser wavelength (632.8 nm) but at very large angle (77°); whereas for the Blue1 only 
the measurement of the zero order was performed, at the working incidence angle (54°). Since the interferometer had a 
100 mm diameter beam, a stitching approach has been applied. 

It is worth to remember that the VPHG Blue1 and Blue2 were post-polished at Ariel Optics Inc. to improve the WFE 
after the measurements provided by KOSI. Such post-polishing consisted in the planarization of the two VPHG surfaces. 
In figure 13, the WFE for the three HR VPHGs is reported. 

   

 
Figure 13. Top: Stitched WFE of the Blue1 HR VPHG for the zero order (on the left) and of the Blue2 HR VPHG for the 
zero order (on the right). Bottom: Stitched WFE of the Blue2 HR VPHG for the first order (on the right) and of the Red HR 
for the first order (on the right). 
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Concerning the Blue1 VPHG, before the polishing KOSI measured a value of 1.80 λ for a subaparture that covered about 
one third of the grating. We notice that the transmitted WFE after polishing reduced to 0.95 λ PtV, in agreement with the 
value provided by Ariel Optics (0.87 λ). This means that the post-polishing process was effective in reducing the 
aberrations of the transmitted wavefront that were due to the grating assembling deformation (probably during the cover 
substrate gluing). According to the WFE shape, astigmatism is the main source of error. Considering the Blue2 HR 
VPHG, we notice on the zero order WFE a very similar behavior to the zero order WFE of the Blue1. This is not 
surprising, since the two VPHGs followed the same production and polishing path. KOSI provided a value of 2.34 λ 
before post-polishing on a subaperture.  

If we consider the WFE of the transmitted first order of diffraction of the Blue1 grating, a PtV of 2.67 λ has been 
measured, which is much larger than the zero order. Different factors may explain this evidence: i) aberration introduced 
in the holographic set-up during the writing step. Indeed, if the two laser beams are not perfectly collimated, the written 
pattern shows some astigmatism especially when the grating is used at a different angle than the writing angle (this is the 
usual condition). ii) The aberration could be due to the curved gelatin layer that is not compensated during the polishing, 
therefore the diffraction of the light occurs from a slightly curved grating. This second option seems to be negligible 
considering the possible grating radius of curvature. In any case, it is important to better understand this aspect from the 
production point of view. Focusing to the Red HR VPHG (figure 13 bottom right), we notice a PtV that is 3.24 λ, which 
is larger than the value for the Blue2. We have to consider that no post-polishing was applied to this grating, therefore 
aberrations due to the substrate and to the grating itself are present and sum up. In any case, in all the three HR VPHGs, 
the WFE is smaller than the 4 λ (best effort) which were required. Moreover, the impact on the spectrograph optical 
quality will be partially mitigated during alignment, since most of the WFE is due to focus and astigmatism that can be in 
part compensated. 

 

6. CONCLUSIONS 
The set of VPHGs, two LR and three HR, for the WEAVE spectrograph has been manufactured by KOSI and fully 
characterized. The LR VPHGs show very good performances in terms of diffraction efficiency and WFE. As for the HR 
VPHGs, the HR Blue1 VPHG does not reach the expected values of diffraction efficiency and the reasons, in terms of 
production parameters, will be studied in details. There is a discrepancy in terms of line density between the value 
measured by KOSI and by INAF for the HR Blue2. Also this aspect will be discussed. As for the WFE in the HR 
VPHGs, the post-polishing process was effective in reducing it especially at the zero order, whereas the impact on the 
first order is smaller. In general, the approach of post-polishing and AR coating deposition on the already assembled 
VPHGs can be effective.  
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